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Abstract. There exists an (’2‘) + 1 parameter quantum group deformation of GL,, which has been
constructed independently by several (groups of) authors. In this note, I give an explicit R-matrix
for this multiparameter family. This gives additional information on the nature of this family and
facilitates some calculations. This explicit R-matrix satisfies the Yang-Baxter equation. The centre
of the paper is Section 3 which describes all solutions of the YBE under the restriction r2} = 0
unless {a,b} = {c,d}. One kind of the most general constituents of these solutions precisely

corresponds to the (’;) + 1 parameter quantum group mentioned above. I describe solutions which
extend to an enhanced Yang-Baxter operator and, hence, define link invariants. The paper concludes
with some preliminary results on these link invariants.
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0. Introduction and Statement of Main Results

This paper is concerned with multiparameter R-matrices and corresponding quan-
tum groups and knot and link invariants. The starting point is an ()1 parameter
deformation of the bialgebra of polynomials on the n x n matrices

K[t ty, 65,0 1,85, 2, ] = K], 6 — th@tF,  e(th) =6t

where 5; is the Kronecker delta. Here K is an arbitrary ground field and the
Einstein summation convention is in force, i.e. t}, ® t¥ stands for _, t} ® t¥.
This (g) + 1 parameter deformation has apparently been independently construct-
ed in various ways by many (groups of) authors, published and unpublished, all
more or less in the winter of 1990/1991. I know of several (including myself)
and the construction is so natural that quite likely there are more, [1, 3,5,9, 11,
14-21]. (Not all these papers deal with the full family and [3], in fact, describes
a quantum group which does not fit in this family at all.)

Perhaps the most natural point of view is to take two ‘most general’ -
dimensional quantum spaces

A=K(X' ... X"/(X'XT=g"XIX"),
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B=K(Yi,..., Ya) /(%Y = 4i;Y;Y3).

Here the ¢/ = (¢7%)~", ¢® = 1, gji = (i)', ¢ = 1 are arbitrary parameters
(viewed as elements of K or as (Laurent) variables). Now look for a maximal
quotient K (£)/1, of K(t), ti = t}, ® t¥, to co-act on the left on A and on the
right on B by the standard formulas

X i@ Xk, Y V@t

For the resulting bialgebra K (t)/I to be nice, in the sense that the underlying
algebra is PBW (Poincaré-Birkhoff-Witt), certain relations must hold between
the ¢/ and gy, viz. that after a possible permutation of the 1,...,n (a renum-
bering of the variables), q9 qij =p# —1,foralli <j. This material, which can
also be found in [1] and other papers, is recalled in Sections 1 and 2 below.

The heart of the paper is Section 3. In it I consider the Yang-Baxter equa-
tion

RpRi3sRy = RisRisRi, R=(rl (0.1)
and describe all invertible solutions which satisfy the additional condition
720 = 0 unless {a, b} = {c,d}. 0.2)

These solutions are constructed with blocks, consisting of several components,
which are fitted together in certain not entirely trivial ways, cf. Theorem 3.35 for
a precise discription. For instance, a block consisting of three components with
only one element looks as follows:

11 12 13 21 22 23 31 32 33

11
12
13

p1

-1
Ty 2

-1
Ty 2

21
22
23

Z21

P2

31
32

33

z31

32

P3

0.3)

where the py, p2, p3 are all three solutions of X 2 = yX + z (but not necessarily
all three are equal). Given any n? x n? matrix R, there is a natural bialgebra
K(t)/I(R), t; — tt ® t;?. Here, I(R) is the ideal generated by the fundamental
commutation relations (FCR) of [6]

RIN'T, = I,T\R, 04)
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where T'=(£3), 1 =T @I, L =1, ®T.

Multiplying a solution of (0.1) with an invertible scalar, produces another
solution and does not affect the relations defined by (0.4). Thus, the parameter
z in (0.3) (or rather its n? x n? generalization) can be normalized to 1 (by
multiplying with (/z)~!). The two roots of X2 = yX + z are then g and
—q~ L. If all the p; are now equal to ¢, the invertible n? x n? matrix like (0.3)
precisely defines the (7)) + 1-parameter deformation of Sections 1 and 2. This is
the main result of Section 4. Having an explicit invertible R-matrix that satisfies
the YBE (0.1), for this (%) + 1-parameter quantum matrix algebra has a number of
considerable advantages. For instance, it immediately follows that the rewriting
rules (0.4) are confluent which greatly simplifies the proof that this () + 1
parameter quantum matrix algebra is a PBW algebra. It also helps with the
matter of defining a quantum determinant and the definition of an antipode on the
bialgebra obtained by making the quantum determinant invertible, thus obtaining
an (3) 4 1 parameter quantum group. This is not further explored here, but see
(4, 12, 13, 6].

It also seems from (0.3) that (7}) parameters of the (7)) + 1, viz. the x5, ¢ > j,
are rather trivial and that there is only one real parameter viz. i (or q; y = g—q !
if z = 1). This does not mean that the general quantum matrix algebra (z = 1,
x;; arbitrary) and the classical one (z = 1 = z;;) are isomorphic; they are not.
All the same, the z;; do seem less basic than g. I do not know how to make
this intuition more precise except in the case of the link invariants defined by
the enhanced Yang—Baxter operator that is associated to (0.3), cf. below.

Each block of a solution of (0.1) (assuming (0.2)) defines a scalar. If all
those scalars are equal (and only then) the solution gives rise to an enhanced
Yang-Baxter operator (TR, v, o, §) in the sense of [22] and, hence, gives rise to
a link invariant. In this setting, the (7)) extra parameters x;;, i > j, are indeed
trivial. They do not show up in the link invariant in the sense that if the n? x n?
generalization of (0.3) (even with both ¢ and —q~! occurring for the p;; we
are taking z = 1) is extended to an enhanced Yang-Baxter operator, which can
always be done, than the resulting link invariant is the same as one obtained
with all z;; = 1 = z (but possibly a different n). This ‘triviality of the z;;’
result only applies to ‘one type II block’ solutions of (0.1). Even in the case
of a two size 1 block solution of (0.1), nontrivially fitted together, a nontrivial
link invariant appears. Though, of course, the two constituents themselves give
nothing. (An n = 1 solution of (0.1) always defines a trivial link invariant.)
Mixing and fitting together different blocks of both different and the same types
seems to promise a rich collection of probably new link invariants. This matter
remains to be explored.

As indicated above, the general solution of the Yang-Baxter equation under
condition (0.2) consists of blocks which are fitted together in certain ways, each
block consisting of several components. In an earlier preprint version of this
paper, I mistakenly concluded that each component would be of size one or that
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a whole block would consist of just one component. This oversight was spotted
and corrected by Dr Nico van de Hijligenberg. I am most grateful to him for this
and for the considerable amount of work he did in checking the whole manuscript
in his characteristic thorough way and the work he put in towards the necessary
corrections. In essence, the correction means that in the ‘S-formulation’ (see
Section 5) certain diagonal scalars (those with all four upper and lower indices
equal) in the general solution according to the original preprint, can be replaced
by scalar matrices (that same scalar multiplying an identity matrix).

1. Generalized Quantum Space Ay

The coordinate ring is K (X!, X?,..., X™)/I,, where I, is the ideal generated
by the elements

Xexbt— g% xbxe, (1.1
where g® = (¢*2)~! and ¢%® =1 for all a,b € {1,...,n}. Thus, depending on

one’s point of view, A7 is a family of algebras parametrized by (}) parameters

or an algebra over K[¢®,(¢®)71;a > b), the ring of commutative Laurent

polynomials in (}) variables ¢%, a > b.

If q% =1, for all a,b, one refinds the coordinate ring K[X', X2,...,X".
The algebra A is graded and it is a graded deformation of A§ = K[X Lo XY
in the sense that dim(A7)m = dim(Af), for all ¢ where a lower m indicates the
homogeneous part of degree m. Also Ay is a PBW algebra in the sense that the
monomials

(xhH.. (XM, 4, e NU{0} (1.2)

form a basis of A7. Indeed it is obvious from (1.1) that every element can be
written as a sum of elements of the form (1.2); to prove the other half, it suffices
by the diamond lemma, [2], to prove that all the ‘overlaps’

XXX, (X°Xx%)xe

are confluent, i.e. give the same results when using the rewriting rules (1.1).
Now

Xa.(XbXC) — qu(XaXC)Xb — qbcqacXC(Xa,Xb) — qbcqacqachXbXa,
(XaXb)Xc — qa'bXb(Xa'Xc) — qabqaC(XbXC)Xa — qabqacqchchXa.
So this is indeed the case.
2. Generalized Matrix Quantum Algebras

Consider the left-coaction of

K=K, ..., thy.. .3 t7, ..., t7)
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on
K(X)=K(X'. .. X"
given by the usual formula
X' — tt @ X* Q2.1

(summation implied).
Now look at what relations are needed between the t’s in order that this
becomes a co-action of some quotient of K (t) on Af. This means that the

relations X X% = ¢ X®X® must be preserved. The image of X*X b_gebxbxe
under (2.1) is

t2td ® X" X" — g"th 19 @ X1 X 2.2)
The coefficient of X" X" in (2.2) is

21 — gtbe? 3)
and the coefficient of X" X*, r < s in (2.2) is

1285 — gt + (¢7%) T — (47%) gt @4)
Let us count the number of independent relations.

(i) For a = b no relations arise from (2.3).
(i) If @ # b, then the relations (2.3) fall in groups of two
tth = q¥uty,  ter =gl 25)

which are equivalent because ¢** = (q?°)~!. Thus, there are precisely

n(Z) = %nz(n -1)

relations resulting from (2.3). And these are independent.

(iii) If @ = b in (2.4), no relations result.

(iv) If » = s in (2.4), the relations (2.4) are implied by (2.3).

(v) For a # b, 7 # s, the relations (2.4) fall into groups of four (or groups of
two if one takes r < s), viz.

teth — ™ htd + (¢7°) 7 5ty — ¢ (q"0) T ety =
o — et ()RS — () e =
) )
)

587 — g*tgts + ()7 0t — (g7 T 0t =
fote — qPrntd + (g) 72 — (") L =

c o oo

(2.6)

These four relations are all the same, e.g., the second is obtained from the first
by multiplication of the first by —¢® and the fourth results from the first by
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multiplication of the first by (—g®3)(¢*")". These relations only involve the
four products t2t%, ¢2t2, t2t2, t%¢¢ and they are the only relations in which these
four (for given a, b, s) are involved. Thus, there are precisely

n*(n —1)?
4
independent relations of this type. In total we therefore have

%nz(n -1)+ }'nz(n —-1)? = %nz(nz -1)

quadratic relations.
To make the dimension of the degree two part of K (t)/I equal to that of the
degree two part of K[t|, we need

20,2
n* — <n2 + E-L%_———l—)> = %nz(n2 -1)
relations, so that precisely half of them are missing. There are a variety of ways
to add the missing relations. An extremely elegant one is to make K (t)/I also
act on the right on the dual of the quantum space Ay, [16]. This, however, does
not result in the most general quantum matrix algebra. To obtain that, consider
a second, a priori completely different, quantum space

By = K(Xg, .-, Xn) /(X6 X = @ Xa Xy, a,b € {1,...,n}) 2.7
on which a suitable quotient of k(t) is supposed to act on the right by
Xi— X; @4, (2.8)

where, of course, gy, = q;bl, Gaa =1, qap # 0.

(NB, the g, are a second set of parameters, which have, a priori, nothing to
do with the ¢®.) The requirement that the action (2.8) be compatible with the
commutation relations X, X, = ¢y XX} of BY, gives necessary relations on the
tg which are completely analogous to those produced by having k(t;) act on the
left on K'(X*?) as above. They are

t;tg = Qabtgt:n (29)
thts — qupthts + (qrs) " 5t ~ qap(grs) Mt5ET = 0. (2.10)

In case g5 = —(q%)~!, relations (2.4) and (2.10) coincide. But generically they
are independent.

2.11. LEMMA. Let I, in K(t) be the two sided-ideal generated by the elements
(2.3) and (2.4), let IR be the two-sided ideal generated by the relations (2.9)
and (2.10). Both I, and Ig are bialgebra ideals in K (t) and, hence, so is I,
the two sided ideal generated by Ij, and IR together.
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The proof of this is contained in Appendix 1.

Remark. There is also a more elegant way to see that I1, and I are bialgebra
ideals. Let A = A?. The dual space is A' = K(X\,...,X,)/J, where J is
generated by X?, XiXj; = —¢7X;X;. It is now a simple mater to check that
A'e A, as defined in [16], is precisely K (t)/I. Now A'e A is always a bialgebra
([16, Section 5]), for any quadratic algebra A. The results above now brings the

additional bit of information that A' e A is, in fact, the largest quotient of K (t)
which co-acts on the left on A7.

Assume from now on that ¢®® + q,;ll # 0 for all a, b. Then the relations (2.4)
and (2.10) combine to give
ttr = (¢ +45") 7 (6”0 — 4 a5 )Est) +
+H@ 4 a5) T (S + g e, (2.12)

Now order the tj as follows. Choose an ordering on the set of indices {1,...,n}
and define

a<c,

ora=cand b < d. (2.13)

t‘g<t§<=>{

Then it follows from t¢t% = g,.,t%t% and (2.12) that every monomial in K (t) can
be written modulo I in the form

B2t <2 <L <t (2.14)

2.15. DEFINITION. An algebra A over K is a PBW algebra if there are elements
Z1,...,Tm in A such that the monomials
zi'zy? . ..apm, o € NU{0}

form a basis of A over K.

It does not yet follow that K(t)/I is a PBW algebra. All we know so far is
that (for any ordering of the indices a, b, . ..) the monomials (2.14) generate the
algebra and that the monomials of degree 2

1] 4182 i i
Litn i Sty

are independent (as they should be for a PBW algebra).

2.16. EXAMPLE OF A PBW ALGEBRA. Let g be a Lie algebra over K and Ug
its universal enveloping algebra. Let z;,..., 2, be a basis over K for g C Ug
(as a vector space). Then by the PBW-theorem (Poincaré-Birkhoff—Witt). The

zit .oy, g € NU{0}
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are a basis for Ug over K. Thus, Ug is a PBW algebra. This is, of course, the
result which suggested the phrase ‘PBW-algebra’. If g is Abelian, then Ug = Sg
the symmetric algebra of g over K, viz.

Sg = Klz,...,2Zm]

2.17. THEOREM [1]. Let K, qu3, q%, t,I be as before, then K (t)/I is a PBW
algebra with generators tt, i,5 = 1,...,n if and only if ¢® + qa_bl # 0 for
all a,b and there is a total ordering on the index set I (possibly different from
1<2<---<n)such that

/g = ¢ /qee =p#—1 forall a<b, c<d. (2.18)

Thus, we get an () + 1 parameter family of PBW deformations of the poly-

nomial algebra K[t},...,7]. Note that I is a graded ideal so that M, = K (t)/I
is also graded. Give the t} degree 1, then

dim(My), = #{(rl, .y Tm) | 7 € NU{0}, im = r}
i=1

= dimK[t},...,t",,
where m = n?, and A, denotes the homogeneous component of degree r of a
graded algebra A.

The Hilbert-Poincaré series of a graded algebra A is by definition equal to
oo
Ha(t) = _dim(A,)t". (2.19)
r=|

Thus, the Hilbert-Poincaré series of every K (t)/I satisfying (2.18) is equal to
that of the polynomial algebra K [t] and the M, = K (t)/I are a deformation of
the graded algebra K[t] in the sense of graded algebras.

2.20. Proof of the necessity of (2.18). By the remark just below 2.10, we already
know that we must have ¢ + q;bl # 0 to get the right amount of linear inde-
pendent monomials of degree 2.
Take s =a, r = b in (2.12) to get

toth = " quti . (2.21)
Now use (2.21) and (2.12) and t2t2 = q®0t2, 3t = ¢,.5t%t2 to calculate t5t0 g
in two ways fora#b# c#a

t5(tat8) = ¢"*qab(t5td)th

= ¢ (¢™ + a3 )7 (%™ — 4 g et +
+0%qan(¢% + a7 ) 7 (¢ + a2t (£528)
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= ¢"qw(q® +a3) T (00" - a5 0 ) (¢ + g, )™ %
x(¢%q" — a5 qp Jtathts +
+¢"qay (4™ + 03 ) 7 (@™ — 9 4ca ) X
x(¢** + a3, ) (6% + a5 tatats +
+¢"qa (0 + ag) ' (@ + 0z )a Pttt
On the other hand,
(t5to)te = qPeh(tctp)
= ¢®(¢® +qz") 7' (0™ — ¢y ) (15t +
+q%(q® + q3) ' (¢ + gz ) (Bt es
= ¢®(¢™ +a) 7 (04" ~ gl e tatets +
+q%(g® + a) 7 (6% + 22 ) g gatitats
It follows that the coefficient of t3t2tS must be zero, which gives

ca ab cb ba

¢q® — qzlaz =0 or ¢%¢"® —q3'q, =0. (2.22)
Let pgp = qaanb = q“bqb‘al. Then (2.22) says
Pab = Pac  OF  Pab = Pcb (2.23)

(This holds for all triples a # b # ¢ # a.) Choose a fixed ¢,j say 1 =1, j =2
and let p = p;;. Then (2.23) implies
pab=p Of pagp=p ', foralla,b (2.24)
(but (2.24) is strictly weaker than (2.23)).
If p=p~! (ie. p = £1), then for all a,b, pap = ¢*°/qse = p and any ordering
works. If p # p~' define

1>] <> pij=p (2.25)

Then i > j, j > k = p;j; = p and pj), = p, so that by (2.23) (with a =1, b =k,
¢ =7) pik = p, i.e. © > k, proving that the order defined by (2.25) is transitive.
For this order, we have

q9 .

— =p;=p fori>j

dji
This finishes the proof of the necessity of Theorem 2.17. The sufficiency can
now be handled by the Diamond lemma [2], which says, in this case, that if
all the overlaps (tft})ty — ti(tity) are zero, then the monomials (2.14) are a
basis. Though there is a good deal of symmetry which can be exploited, this still
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involves quite a number of cases and rather lengthy calculations for each case.
We shall use a different approach, cf. Corollary 4.25.

3. A Rather General Candidate R-Matrix

Let R = (r;‘g) be an n? x n? matrix over K. In this section, we examine a fairly
general R-matrix whose form is inspired by the kind of commutation relations
of Section 2 and study when it satisfies the Yang-Baxter equation

Ri2Ri3Ry = R3RisRia. 3.1
Here, R: V@V — V ®V, where V has basis e!,...,e", is given by
Rle'®el) = rgek ®¢é,
R =R®Id, Ry =1d®R,
and
R @d @) =rt emgel @ e
In terms of the entries 7% of R, Equation (3.1) says

b kic kaky _ bc .aly Ll
T.g| kzru;c3rv’;lu Y= Tlllzrl3wr'l:'ul ) (32)
for all a,b,c,u,v,w € {1,2,...,n}.
Now consider a general R-matrix with the requirement that

8 =0 unless {a,b} = {c,d}. (3.3)

Thus, the only possibly nonzero entries are of the form rgg, ng, rad (and 'rgg,
%), a #b.

This is more or less inspired by the commutation relations of Section 2 and,
as we shall see in Section 4, it is possible to choose the 7% such that the
commutation relations of Section 2 are reproduced. It is somewhat remarkable
that the requirement that an R-matrix of type (3.3) satisfy Y B is practically (but
not quite) equivalent to the requirement that it gives the right number of relations
in degree 2 and that then these are precisely the commutation relations of Section
2 above.

The following lemma drastically reduces the number of equations (3.2) that
must be examined (from n® to 6n?).

3.4. LEMMA. Let R be an n® x n? matrix satisfying (3.3). Then both sides of
(3.2) are zero unless {a,b, c} = {u,v,w}.

Proof. If a term on the left-hand side of (3.2) is nonzero we must have
{a, b} = {kl,kg}, ky € {k],c} SO {kl,kz, ]C3} C {a, b, C}. Further u € {kl,C},
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v, w € {ka, k3} so {u,v,w} C {ki,c,ka,k3} = {ki, k2, k3} C {a,b, c}. Similar-
ly {k2, b3} = {v,w}, ki € {u, k3}so {ki, k2, k3} C {u,v,w}; {a,b} = {k1, k2},
c € {u,k3} so {a,b,c} C {ki, ka, k3, u} C {u,v,w}.

The argument that for a nonzero term on the right-hand side we must have
{a,b,c} = {u,v,w} = {l1,l»,13} is quite similar. Indeed {b,c} = {I;,12}, Is €
{a,la} so {l1, 1,13} C {a,b,c}; {u,v} = {l1,3}, w € {a,la}, s0 {u,v,w} C
{l1,12,13,a} C {a,b,c}; and {l},13} = {u,v}, b € {l3,w}, so {l1,l, 13} C
{u,v,w}; {b,c} = {l}, b}, a € {l3,w} so{a,b,c} C {l1, 12,13, w} C {u,v,w}.

3.5. LEMMA. Let R be an n® x n? matrix satisfying (3.3). Then

n
det(R) = [T ré [t - riinf.
1

i=l  i<j

Proof. Immediate.

3.6. THE R-EQUATIONS

Many of the equations (3.2), assuming (3.3), are automatically satisfied. Take,
for example, a # b # ¢ # a, u = a, v = b, w = ¢. Then the nonzero left-hand
terms must have k| = a = u, k3 = ¢ and, hence, k; = b so the LHS is equal to
rggrggr’gg. For the RHS, we must have I3 = a, I = ¢, hence {; = b and so the
RHS is 78727 and so this equation is automatically satisfied. As it turns out,
there remain the following equations

bC( ab (ZC) bC( ab,.bc ac cb)

Tbe(ToaTca) = Toe\TbaTch + TeaTbe
(a#b#c#a,u=bv=cw=a), (R
aby,.ac,.ba ab, bey __ .aby be, ac
Tab(rcarab + Tbach) =Tab (ch'rca)
(a#b#c#a,u=cv=aw=0>b), (R2)
ab,_.ba _.ac ab_.ab,bc __ be, .cb, ac be, be,.ab
TabTbaTca + TbaTbaTcb = The cbTca + TebTebTba
(a#b#c#a,u=cv=>bw=a), (R3)
TacTeaTac =0 (@a=b#c,u=a,v=cw=a), (R4)
..aa,.aa,.ac __ ..aa,.ac,.ac ac,.ac,.ca
TaaTaaTea = TaaTeaTea T TacTeaca
(a=b+#cu=cv=w=a) (RS)
aa,.aa,.ca __ ..aa,ca, ca ca,.ac,.ca
TaaTaaTac = TaaTacTac T TcaTacTac

(a#b=cu=buv=bw=a), (R6)
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ThaTeThe = rharaiTes (@ =c#bu=a,0=bw=a) (R7)
All the other cases either give nothing or give back one of these seven types
of equations. For the complete detailed analysis, cf. Appendix 2.

3.7. A SOLUTION FAMILY
Take

i

— . ; ; ij
Ti = Tij for i > j, T

-1 . .
o =15 AUNg fori < 7,
Fit U rl ==y ifi< r =0 fori>j
M ’ Jt d .77 J1 .7

It is a straightforward matter to check that these r’s satisfy (R1)—(R7).
There are (’2‘) parameters z;;, ¢ < j and two more parameters A%, \;. One of
these can be eliminated by dividing all parameters by an arbitrary number.
Thus, we have here an () + 1 parameter family and this is, in fact, the () +1

n
2
parameter family of Section 2 above. The connections are

¢ =2\, g = g, a>b. (3.8)
3.9. ‘PARTIAL ORDERING’ {1,...,n}
We assume that R is invertible. Define for a,b € {1,...,n}:

agb <= r@ £0. (3.10)

3.11. LEMMA. The relation defined by (3.10) is a ‘partial order’.

Proof. We have to show transitivity. Let rgg #0# rgg, ie.a <b b< cand
we have to show rgf # 0 (which is a < ¢).

By (R7), there are four cases to be considered

e #0,  me=0, 0, =, G.11.1)
e #£0, =0, rbe=yg (.11.2)
=T A0, r%#£0, =, (3.11.3)
e =Tl #0,  r—re o (.11.4)

In case (1) by the invertibility of R (cf. Lemma 3.5), also rgf)’ # 0 # ré’g.
Hence, by (R2), ribrbe = r%r3 and, hence, T3 =@ oL (),

In case (2), also rgg #0 +# rgg and using (R2) with a and b interchanged
gives ro%rgb = réer¥ so that again T = r@b £ 0,

In case (3), by the invertibility of R, rb¢ # 0 r$ and hence by (R1)

C
ab.ac _ ,.ab,.bc ac __ b
TbaTca = Tha'op @nd, hence, 73 = Top # 0.
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In case (4), suppose that 3¢ = 0. Then, by invertibility of R, r2 # 0 #
ca
ca-

Now use (R3) with b and ¢ interchanged to obtain

r

ac,.ca,.ab ac,.ac,.ch ¢b,.be,.ab cb..ch pac
TacTeaTba + TeaTcaTbe = TebTheTba T TheTbeTca

By (R4), rgg = rbc = 0 (because rggrgg # 0); hence this would give

rérer =0, e r® =0,
a contradiction. Hence, 7 # 0, concluding the proof of the lemma. a

We note that the relation < does not satisfy the antisymmetry, i.e. it does not
satisfy: a < b and b < a implies a = b. For this reason, we wrote ‘partial order-
ing’, the consequences of this will be examined in more detail in Section 3.15.

3.12. BLOCKS

Still assuming that R is invertible, define two indices a,b € {1,...,n} to be
connected (notation ~) if a < b or b < a in the ordering of (3.9) above.

3.13. LEMMA. Connectedness is an equivalence relation.

Remark. This is not immediately implied by Lemma 3.11. It adds information,
e.g., to the case a < b,a < ¢, by stating that then b and ¢ are connected.

Proof of Lemma 3.13. Suppose that a ~ b and b ~ ¢, we prove that a ~ c.
There are four cases to consider

rba#O r 5 70. Then a < b,b< ¢, hence a < cand 7% #0, (3.13.1)
% 20,782 £ 0. Then b < a,c < b, hence ¢ < a and Tge 7 0. (3.13.2)
The other two cases involve more work:

Tba # 0 'f'bc 75 0 (3133)

As in the case of the proof of Lemma 3.11, there are (by (R7)) four possible
subcases to consider.

ri#£0,  ri=0, rR#£0, r¥=0, (3.133.1)
e #0, =0, rf=rE#0, (3.13.3.2)
b =rbe£0,  r#£0, =0, (3.13.3.3)

Tba - rab 76 O rbc = ch 74 0. (3.13.3.4)
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In the last three subcases, Lemma 3.11 is immediately applicable. It remains
to deal with (3.13.3.1). In this case, rbc # 0 by invertibility. O

Now use (R2) after the permutation b — ¢+ b, a — a to find

aC(T,ab ca ac,.ch cb,.ab

baTac T TeaTbe) = Tac(TheTba)- (3.13.3.5)
Now if % = r$2 = 0,73 # 0 by invertibility. Hence, the RHS of (3.13.3.5) is

not equal to zero so that also Tge or T3¢ must be nonzero, yielding a contradiction.
By consequence, a ~ c.

The final case is

T #0, T #0, (3.13.4)
Again there are four subcases
P20 p®=0,  rlesto, =0, (3.13.4.1)
WAO,  rg=0, riE=r2#0, (3.13.4.2)
ret=rh 0,  r#£0, =0, (3.13.4.3)
=Tt #£0,  rE=rg 0. (3.13.4.4)

Again, Lemma 3.11 immediately takes care of (3.13.4.2)—(3.13.4.4) and only
(3.13.4.1) remains. In this case if 3¢ = r5% = 0, r% # 0, which by (R1) (with
a and b interchanged) would imply rg‘grgg =0, contradlctmg (3.13.4.1). Hence,
Teg 7 0 or r$% # 0 and we are done.

3.14. DEFINITION. An equivalence class B C {1,...,n} under the equivalence
relation of connectedness will be called a block.

3.15. STRUCTURE OF BLOCKS I

In this subsection and the next, the structure of blocks is examined. More pre-
cisely, if B is a block, the submatrix Rg = (ré‘é’)a,b,c,de p is determined. After
that, we will examine how blocks can fit together.

A block is a totally ordered subset of {1,...,n}. However, due to the lack
of the antisymmetry property of the ordering relation <, it is possible that inside
a block elements a and b exist that cannot be separated. By this, we mean that
there may be elements a and b that satisfy the condition a < b and b < a. In this
case, we will say that a and b are strongly connected (notation a ~ b).

3.16. DEFINITION. An equivalence class C' C B under the equivalence relation
of strong connectedness will be called a component.
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The first step in constructing the general R-matrix is determining the submatrix
Re = (rgdb)a,b,c,dec, where C is a component of a block B.

3.17. PROPOSITION. Let C be a component of a block B, then there is a A # 0
such that for all a,b € C (a # b):

aa bb . b
rdd =l = r@d =it =, 8 =rp =0. (3.18)

Proof By assumption rf® # 0 # rb%. Hence, ri = 8¢ = 0 by (R4), and
A =72 = r% by (R6). Puttmg this in (RS) gives

aa,.aa,ab aa,.ab,.ab
Taa aaTba = Taa"baTba (319)

By invertibility of R (cf. Lemma 3.5), rgq # 0. Hence, rqq = r® = X and
switching a, b, also rgg = A. Hence, (3. 18) holds for these particular a,b € C.
Now let ¢ € C,a # ¢ # b. The same argument as given above can be applied

with ¢ substituted for b which proves the proposition.

3.20. STRUCTURE OF BLOCKS II

Let B be a block, it consists of several components C},Cs, ..., Cp. Since all
elements of B are connected, we may assume that the components are numbered
such that ) < Cp < - < Cp, ie. i < j, a € C; and b € C; implies a < b.
Here a < b stands for @ < b and not b < a. The structure of the submatrices
Rg, follows from the preceding proposition, the next proposition describes the
structure of the submatrix Rp.

321. PROPOSITION. Let B be a block with components C; < Cp < --- < C,
and let \; be the scalar that corresponds to the submatrix Rc, accordmg to
Proposztton 3.17 (for all 1 < p), then there are scalars y # 0 and z # 0
such that for all 1 < j, a € Ci and beCj:

u.b =0, rba =y and rggr,?g = z. (3.22)

Furthermore, the scalars X\; satisfy the quadratic equation
(N)F =N+ 2. (3.23)
Proof. According to Proposition 3.17, we already know that for all a, beCj

aa bb ba __ ab

ro® = rip =rip =rof = A, réh =rpa =0.
We take elements a and b of C; and ¢ of Cj (i < j), then a =~ b<cso

o+ 0# rcb, ré=0= rbc (3.24)
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It follows from (3.24) that
e £0#rD, ThF0F o (3.25)

Now use (R1) to see that

rie =gl =y;; (defining yi;) (3.26)
Consider (R5)

()i = N(Wig)” + Tacrcaliis (3.27)
and similarly with a and b interchanged to find

()25 = NilBig)? + Thereayi (3.28)

which gives us the definition of z;; as z; = rocrce = pbere. Take a € Ci,
beCjandc€ C, with i < j < k, then by using (R1) and (R2), it follows
that

b =y =10 = Yk =Tog = Yik: (3.29)
By this y is well defined. Using this in (R3) gives

b 3
pabpby B = iy + 1P =rhrdy + v =y + v (3.30)

and, hence, as y # 0, z;j = 2; k- Switching b and c in (R3) now gives z; k = z; k
and this establishes the first part of the proposition. The last part of Proposi-
tion 3.21 now follows directly from (RS5) and (R6).

3.31. PROPOSITION. Let By, ..., Bm be the blocks of {1,...,n}, then there
are zg, s,t € {1,...,m}, zst = zs, such that
rrb® =z forall a€Bs, be B; (s #t). (3.32)
Proof. Choose ¢ € Bs,d € By and set
Zst = rgg’rgg. (3.33)
If #B; = #B; = 1 there is nothing more to prove. If #B, = 1, #B; > 1, let
b€ By, b+#d. Then rbf # 0 or 78 + 0 and in both cases (R3) gives

rhoréh = rerde (3.34)
establishing the result in this case. The case #Bs > 1, #B; = 1 goes the same.
Finally, if a # ¢, a € Bs, b # d, b € By, then we get again rgg = rglg and also
because 7% # 0 or r5s # 0

ab_.ba __ .bc..ch
TabTba = TbcTch
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which combined with (3.33) gives (3.32).
It will now tumn out that the various properties which have been derived are,
in fact, also sufficient to guarantee a solution of the YBE. This leads to the

following description of all invariable solutions of the YBE under the restriction
r® =0, unless {a, b} = {c,d}.

3.35. THEOREM. Divide the set of indices {1,...,n} into blocks and divide
these blocks into components. Further choose numbers € K as follows:

(i) For each block By consisting of a single component C choose \s € K,
As #0.

(i) For each block Bs with more than one component, choose ys € K, zs € K,
zs # 0, ys # 0 and for each component C: in Bs choose a Aj satisfying
(’\S) )‘Sys + Zs.

(ii1) For each two blocks Bs, By, s #t choose zg € K, 2t # 0, 2t = 245

(iv) For each a,b € B; with a > b choose g € K, Ty # 0.

(v) For each a € Bg and b € By with s > t choose Tap € K, Tqp # 0.

Now define the 13 b as follows

(v1)Ifab€CSCBS,agéb Taa—rgg——rgg*—rab—)\s 7 = rhe = (.
(vii) If a,b € Bs, a < b, rba——ys, ab-—O rab—-zsa:ba, 2 = Tpq.

(viii) Ifa € B, b€ By, s <t 1% =14 rt?=zuzy, r¥ =r =0
(ix) 7% = 0 unless {a,b} = {c,d}.

Then the T8 b thus specified constitute a solution of the YBE.

Moreover up to a permutation of {1,...,n} (nonunique as a rule) every
solution satisfying (ix) is thus obtained.

Proof. After a permutation of indices, if necessary, the ‘partial order’ defined
by a < b & rf 5 0 is compatible with the natural order of {1,...,n}. The
statement that all solutions under the restriction (ix) are obtained by the recipe
(i)—(viii) above is now the content of the lemmas and formulas (3.10)~(3.34). It
remains to show that if R = (r cd) is constructed by this recipe, then it is indeed
a solution. This is a fairly straightforward verification of (R1)—~(R7).

The six equations (R1). If a, b, c do not all belong to the same block, at most
one of the three pairs 2%, rb¢; rgg, r£% 12, r¢% can be nonzero. As each term in
an (R1) equation involves a product of elements from different pairs, all terms
in an (R1) equation are zero in this case. It remains to check the case that a,
b, ¢ all belong to the same block. If they all belong to the same component,
then 'rbc = 0 and both sides are zero. If they belong to different components

then if a < b < ¢, 7 _Oandrgg—r'gg=ys;lfa<c<b % = 0 and
rbg—ys—rbc,lfb<a<c rba—O—rbc,1fb<c<a r‘c‘g=0—rgg;if

c<a<bri¥=0=rkifc<b<a, rf=0=r; so(Rl) holds in all six
cases. If two of them are in the same component, then there also are s1x cases
to be investigated: if a ~ b < c 1% =1 =y ifa~c<b T = =y if
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b<a~crbc—-rba—0 fec<axbr=r%=0ifbxc<aora<bxzc
then 'r =0.

The six equations (R2). As in the case of (R1) if a, b, ¢, a # b # ¢ # q,
do not all belong to the same block, all terms are zero, and, also again, if q,
b, ¢ all belong to the same component, then rd = 0. If two of them are in the
same component, then if a ~ b (R2) is trivial since 'rab =0.Ifa @ c <,

rbe = rbe = 0, 1fb~c<a r“b—rf_%g:-O;ifa<bzc,rg2=rgg—ys
and if b < a =~ c 18 o= rbg = y,. It remains to deal with the case that a, b, ¢
all belong to a block B, and to different components. If a < b < ¢, 7”% =
and r@ = ys = 1% ifa < ¢ < b, 7% O—rab,lfb<a<crb%_,
rbe =y = if b<c<a, rm—O—rba,lfc<a<b T =0 = r%; if
c<b<a;ri=0=r Thus, (R2) holds in all cases.

The six equations (R3). If a, b, ¢ do not belong to the same block, both the
second term on the left and the second term on the right are equal to zero. Take
a € Bs, b € B, ¢ € By, if s # u then (R3) is trivial since rg; = 0 and if
t# s = u, then 78rYe = rbr = z;,. What remains is the case s = t = u. If
a,b and c belong to the same component C both sides are equal to (/\S) since

rag = rgg = 0. If two of them are in the same component, then again there are
six cases to be considered: if a ~ b < c, ys(/\s) = ys2s + /\s(ys)z' ifc<acxb,
i =% =0ifcxa<hb, rbe Oandragrgg-“rg’g gg’:zs, ifb<cx~a,

rgg = O and ngrgg = riord = zs, if a <bx~c yszs + )\S(yq) = JS(/\S)Z' i

b~c<a, ¥ = T'ba = 0. Finally, if a, b, ¢ all belong to different components
of a block B; the first term on the left and the first term on the right are either
equal to zero (¢ < a) or equal to zsys (a < c). The other terms are zero unless
a < b < ¢ and then both are equal to (ys)*. By this (R3) holds in all cases.

The two equations (R4). If a and c are not in the same block r¢s = 0. If they
are in the same component of a block, 3¢ = 0; if they are in the same block but
in different components rZrss = 0.

The two equations (RS) If a and c are not both in the same block rl; =
and all terms are zero. If a and ¢ are in the same component of a block Bs,
ré = Xy = 1% and ri = ri7 = 0 so that (R5) holds. Finally, if a and ¢
are in different components of B, all terms are zero unless a > ¢ and then
Tog = /\s rie = yg, roris = zg by (viii) and (R5) holds because /\j solves
X?= X Ys + Zs-

The two equations (R6). Exactly the same argument as (R5).

The two equations (R7T). r,‘jg Z‘g = 0 unless a and b belong to the same
component of a block By and then rl‘}g = rZ‘g = Aj.

3.36. SOME EXAMPLES

In case of a solution consisting of only one block we speak of an irreducible
solution, a solution consisting of several blocks is called reducible. There are
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two kinds of blocks which are rather special. The first is the one that consists of
only one component and the second one is build from components that contain

only one element, we shall denote these blocks by blocks of type I and type II,
respectively.

11 12 13 21 22 23 31 32 33

11 x
12 zwz—ll Y
13 zzy;! Yy
21 T

22 A
23 z:c;zl Y

31 T3

32 T3

33 w

n = 3; one block of type II
N =Xy+z p?=py+2 A\p,xiy,2#0; p=>5)

11 12 13 21 22 23 31 32 33

I A
12 A
13 A
21 A
22 A
23 A
31 A
32 A
33 A

n = 3; one block of type I
(A#£0; p=1)
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11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 A4

1 N
12 P v1
13 zuz;ll

14 212::;11
21 T

22 AL

23 25

24 zpzy!
31 31

32 z32

33 A2
34 22:1:4_3l ¥
41 Za)

42 T4z

43 Z43
44

K2

n = 4; two blocks of type II of size 2
(A3 =My + 215 M o=y + 2; wa = s + 225 Tij, Ni» M2, Zi, 212 # 0;
p=11)

11 12 13 21 22 23 31 32 33
11 X

12 z,;:cz—ll

13 z13:c3_11
21 21

22 bys

23 -
31 z31

32 T3

33 A

n = 3, three blocks of type I of size 1

(p =9, all parameters # 0; if all blocks are of size 1, R is simply any invertible
diagonal matrix)
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11
12
13
14
21
22
23
24
31
32
33
34
41
42
43
44

n = 4, one block of size 4 with three

11

Ay

13

zz:;ll

14

-1
#T4

21

AL

22

23

24

31

32

33

34 41

42 43

44

Al

-1
ZIjz

-1
2Tq)

3]

32

A2

-1
2Ty

size 2 (/\f =ANy+2z N, Y, 2,25 #0;,p=17)

11
12
13
14
21
22
23
24
31
32
33
34
41
42
43
44

n = 4, one block with two components of size 2
(AF =Ny + 25 A, 2y, 245 # 0, p = 6)

11

Ay

12

13

ZI?:”

14

1
24y

21

22

23

24

31

32

components, two

33

41

34 41

T4

43

42 43

A

of size 1 and one of

44

At

-1
21}32

zz[z'

32

A2

Y

T4y

T4

A2
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In the examples above, p is the number of parameters that are present in the
R-matrix. An irreducible solution has p = 1 in case of type I and p = (5) +2
in case of type II, where n is the size of the block. In the reducible cases, the
number of parameters can increase drastically to a maximum of n?; in that case
there are n blocks of size 1 and R is simply any invertible diagonal matrix. This
is, in a way, the most degenerate case.

3.37. CONCLUDING COMMENTS FOR SECTION 3

Any solution of the YBE, in fact any n? x n? matrix R, can be used to define a
bialgebra by commutation relations RT>T, = I,T\ R, cf. below. The ‘standard’
quantum group of type A,_; corresponds to the case of one block of type II
of size n withy = g—¢7 !, 7% = X =g forala, z =1, x4 = 1 for all
a>b

As we shall see, the irreducible case of type II, with 752 for all a equal to
the same solution A of X2 = yX + z corresponds to the (3) + 1 multiparameter
quantum group of Section 2. In this case, there are p = (}) + 2 parameters, but
one is superfluous because multiplication by a scalar is irrelevant both for the
YBE and for the commutation relations defined by an R.

The structure of the R-matrix for the () 4+ 1 parameter quantum group is
illuminating. There are () ‘diagonal parameters’ and these define what in sev-
eral ways seems to be a rather nonessential (though definitely not trivial in the
technical sense) deformation of the matrix algebra. The phrase ‘rather nonessen-
tial’ here is intuitive and should be given precise meaning. One fact in this
direction is that the extra (7)) parameters (the z;;) do not appear to give any
more sensitive Turaev-type knot invariants; they simple drop out of the defining
trace formula, even though the relevant braid group representations are differ-
ent.

The irreducible type II R-matrix with mixed r3%, meaning that some of the
% are equal to one solution of X% = (¢ —q~")X + | and some to the oth-
er one, give rise to bialgebras with nilpotents (so not quantum groups in the
accepted sense of the word); they also give the same polynomial Turaev-type
knot invariants (for a lower size R-matrix).

The known classical R-matrices of type B!, C!, D', A? do not arise as special
cases of those of Theorem 3.35. These classical R-matrices do, however, satisfy
a very similar condition to the one considered here. Let o be the involution on
{1,...,n} given by o(i) = n + 1 — i. Then these R matrices of type B!, C',
D', A? satisfy

r® =0 unless {a,b} ={c,d} or b=oc(a), d=o(c). (3.38)

It looks possible to extend the analysis of this section to the case of all solutions
of the YBE satisfying (3.38).
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It seems likely that the (7)) +1 parameter quantum R-matrix is maximal though
this remains to be proved. Possibly it will thus be possible to find the maximal
families for type B!, C1, C!, A2 as well.

Work on all these matters is in progress.

4. The R-Matrix Bialgebras Defined by the Fairly General R-Matrix
of Section 3

Let R again be any matrix satisfying
R% =0 unless {a,b} = {c,d}. 4.1)

We investigate the commutation relations defined by

RT\T, = TR, 4.2)
where
t ooty
T=|": Cl, =T, TLh=I,T.
tn tn
l n

Then the relations (4.2) written out become

rintetd = i, .3)
Let I(R) be the two-sided ideal in K (t) generated by the relations (4.3). Then
I(R) is a bialgebra ideal, cf., e.g., [10].

4.4. THEOREM. Let R be a solution of the YBE consisting of one type Il block of
size n such that, moreover, rgq = constant for all a € {1,...,n}, then R defines
a multiparameter quantum matrix algebra as described in Section 2 above.

Proof. Recall that the quantum matrix algebra in question arises by taking
the maximal quotient of K(t!,...,¢) that acts from the left on a quantum
space K (X! ... X"), X1XJ = ¢ X7 X" by the usual matrix action and from
the right on a quantum space K (Y1,...,Y,), YiY] = qu VY, where ¢% = 1,
77 = ("), g = 1, qr = (que)~" and the ¢¥ and gy, are related by

g =p# -1 (i<j) (4.5)

and the relations defining the quantum matrix algebra are

tath, = qabthity, (4.6)
thth — qanthts + (grs) ™ 't5th — qablars) ~'t5th = 0, (4.7)
tate = ¢ taty, (4.8)

thty — q "ty + (¢°°) ' hts — (¢7%)(¢™) 5t = 0. (4.9)
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Choose y, z, Tij, ¢ < J, as in Theorem 3.35. Let A%, —)\4 be the two solutions
of X% = Xy + z and take

rie = \Y, 1% =4 fora>Db,
i = \Agzy, fora>b, (4.10)
r® =\t — ), fora<bd,  rif=0 fora>d,

as described by Theorem 3.35. (One can also take 739 = —Mg for all a; that

gives an isomorphic matrix algebra.)
The nontrivial relations resulting from 4.3 are

a=b c=d, 7094 =rtit (4.11)
a=b c#d, 78 =i + ri5eal, (4.12)
a#b c=d, %t + gt = rtd, (4.13)
o #b, ctd, relth 4+ rfedts = reathtd + riseltd. (4.14)

Because 12 = r& = A%, (4.11) holds. Now take
¢ =z (N7, Qba = TapNy' fora <b. (4.15)

Notice that indeed q*qgp = Zap(A¥) ! (x;bl Ad) = Ag(A¥)~! = p = constant.
Substituting the values of (4.10) in (4.12), we obtain for d < ¢

AUt9tS = zeqtgts + (A — Ad)totg
so that indeed

1042 = A7 e oatte = A ' Tactite = qeatgte, (4.16)
which is (4.6). And for ¢ < d, we get

AU43t8 = AUz t5te,
which gives

£45 = Naz tate = 0, tate = dedlctd,

which is the same as (4.16).
Now substitute the values of (4.10) in (4.13). There are again two cases to
consider.
If a < b we find
ANz 08 4+ (A — Ag)thtd = Aveded,

which gives (using 4.15)

28 = ()~ wgptltd = q*0tlte,
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which is (4.8).
If a > b we find

Taptltd = Avt5t
which gives
tht = () aaptet? = gottd

Finally substitute the values of (4.10) in (4.14). Note that (4.14) really embod-
ies four equations between the t2t3, t4t%, t%t4, t52; namely, the one written down

and the three obtained by switching a and b, switching ¢ and d, and switching
both.

Taking a < b, ¢ < d, we find

N Xz 245 + (A = Ag)tltd = X¥hgz )} t4e2. (4.17)
Switching a and b in (4.14) and then substituting gives

Taptltd = Nz 32, (4.18)

NG 138 4 (A% = Ag)tht2 = 2ogt21% + (A% — Ag)tht2. (4.19)
Finally, switching both a, b and ¢, d and then substituting gives

Taptotd = woqt3th + (A% — Ag)t3el. (4.20)
Observe that (4.18) and (4.19) are identical. It is easily checked that

Tab(N*Aa) TN (4.17) + (2)(4.20) — (07" = (A*)7')(4.18)

has equal left- and right-hand sides. Thus (4.17)-(4.20) are equivalent to (4.17)—
(4.18).
Multiply (4.17) by z45(A%*Ag)~! to find

1315 + 2ap A7 1088 — wap Ay 10t — w52 = 0 (4.21)
and now use (4.18) to rewrite the third term to find

t245 + zap g 10 — Ngz ) 150 — xapa ) t0t2 = 0. (4.22)
Because a < b, ¢ < d, we have by (4.15) that

a5 = qba = za\] ', Gea = (qae) ™' = (zeary ) = Nz,

qa_blch = ZapAy IAdﬂﬁc_dl = %b%—d‘,

so that (4.22) is identical with (4.7).
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Now use (4.18) to rewrite the second term in (4.21). This gives
£40 4 AUz 40 — wp g 0L — map ) tate = 0. (4.23)
Again, as a < b, ¢ < d, we have by (4.15) that
qab — ()\u)_ll'ab, (ch)~l — ((/\u)-lwcd)—l — /\uzc—dl,
qab(ch)«l — (,\u)-—lzab)\uxc—dl’
so that (4.23) is identical with (4.9).
This finishes the proof of the theorem. (Though not necessary, given what has
been shown about the rank of the various groups of relations involved, it is in

fact now not difficult to show that inversely the groups of relations (4.7)—(4.9)
imply the group (4.14), i.e. (4.17)-(4.20).)

(4.24)

4.25. COROLLARY. Let M7*™ be the multiparameter quantum matrix algebra
of Section 2, i.e. My*™ = K(t)/I when I is the ideal of the relations (4.6)—
(4.9). Then My*™ is a PBW algebra with the same Hilbert—Poincaré series as
K[t} ..., t7).
Proof. We already know that the dimension of the degree 2 part is exactly
right viz. n? + (’;2) The commutation relations are of the form
T\'T, = R™'BTIR.
Now R satisfies the YBE, i.e.
Ri2R13R23 = RisRi3Ry. (4.26)
Now for the triple product T1 1573,
T =TRI®I, h=19T®I, T=I1I®T,
we have that
T\(TT3) = TiRy TTaRos = Ry (TIT3)TeRas = Ryy Riy TyTi RisTa Ro
= Ry R (TiT2)Ri3Rys = Ry Ry TRy, ThTi RizRis Ros
= Ry R R LT RinRis Ros. (4.27)

(Note that R;;T), = T Ryj if i # j # k # i because R;; only affects factors
i and j where T} is the identity.) We also have
(\D)Ts = Ry TTiRuT: = R T(T\T3)Rie = Ry LR TsTiRi3 R
= Ry Ry (BT3)TiRi3R; = Ry R Ry T RysTi RisRiz
= Ry Ry Ry T3 RysRisRi. (4.28)
The end products of (4.27) and (4.28) are the same proving the confluence con-

ditions of the diamond lemma, [2], and the result follows. This argument: YBE
= confluence condition of diamond lemma has been observed before [6].



MULTIPARAMETER QUANTUM GROUPS AND MULTIPARAMETER R-MATRICES 83

4.29. COMMENTS ON THE OTHER SOLUTIONS OF THE YBE

The solutions consisting of one block of type I gives, as is easily checked, no
relations at all among the t; The solutions consisting of one block with several
components with mixed parameters \; give rise to a bialgebra K (t)/I(R) with
nilpotent elements. Indeed if, say, a € C| and b € C, and \| # ),, then by
4.11)

)\ltgtg = )\ztg'tg', (4.30)

so that (t¢)* = 0. These are, of course, perfectly good solutions of the YBE and
as such are of potential use in, for example, the business of constructing link
invariants (cf. Section 5 below) but the bialgebras they define are not quantum
groups in the (more or less) accepted sense of the word. (There is no consensus
and some authors equate the concepts Hopf algebra and quantum group; I would
be inclined to reserve the phrase quantum group for a Hopf algebra that is a
PBW algebra and is a deformation of the function algebra of a linear algebraic
group.) Let me also remark that in spite of nilpotents, these bialgebras are still
pretty nice in the sense that its defining rewriting rules (commutation relations)
are confluent (so that it is easy to write down a basis and a version of Grébner
basis theory probably applies).

4.30. QUANTUM GROUPS

Let again R be a single block solution of the YBE with constant parameter
A; defining a multiparameter quantum matrix algebra M, = K (t)/I(R). As is
shown in, e.g., [1], for the case of a single type II block there is an element
d in M, (a quantum determinant) such that the localization M,[d~'] admits an
antipode and thus becomes a Hopf algebra.

By the work of [6, 12, 13], cf. also [4], the fact that M, comes from a solution
of the YBE is useful in establishing such facts.

5. Yang-Baxter Operators and Link Invariants

For this section the Yang—Baxter equation takes the form
S12823812 = 523512523. .1

If S = (5%), then in terms of the entries of S, this works out as

ab le _km _ _ai ,bc_kj
Skl SmwSuww — Suksijsvw' (52)

There is a simple relation between (5.1) and the YBE (3.1): if R = (r?fj) solves
(3.1), then both

b b b 1 (Jab ‘ab __ b
S:(S(cld)v Stcld"rfilc’ S "(sc(zli )7 Sc%l = c?i (5.3)
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solve (5.1) (and vice versa). Let’s check that for S. Putting (5.3) in the LHS of
(5.2) gives

T T (5.4)
which is the LHS of (3.2) with uvw replaced by wvu; now put (5.3) in the RHS
of (5.2) to find

riirerkl, = rierfirdd, (5.5)

which is the RHS of (3.2) also with uvw replaced by wvu. The proof for S’ is
as easy (except that now RHS and LHS switch).

5.6. DEFINITION ([22]). A Yang-Baxter operator consists of a quadruple (S, v,
a, B), where S is an n? x n? matrix satisfying the YBE in the form (5.1), v is
an n X n matrix, and a, 8 are invertible scalars which are related to S by the
conditions (5.7)-(5.9)

v ® v commutes with S, (5.7
Try(S o (v @ v)) = aBv, (5.8)
Tr(S7 o (v@v)) = o~ !B (5.9)
Here if M = (m) is an n? x n? matrix (with the usual ordering 11,...,1n;
21,...,2n;...;nl,...,nn of rows and columns), then Trp (M) = N is the nxn

matrix with entries
nt =mi + ... +m, (5.10)

ie. if M is written as an n x n matrix of n x n blocks, then N is constructed
by replacing each block of M by its trace. If v is invertible, then (5.8) and (5.9)
are equivalent to

Try (5! o (I, ® v)) = o' Bl (5.11)

(where I, is the n x n identity matrix).
Given a YB operator (S, v, o, ), Turaev’s formula

Ts(€) = a8 ™Tr(pg(£) 0 v®™) (5.12)

defines a link invariant. Here £ € By, the braid group on m letters, w(§) = Ze;
if € = ofl‘ ... crfr", where the o; are the standard generators of By, and pg is the
representation of the braid group (in (K™)®™) defined by S, oi — Sii+1; Ts(é)
is then independent of the particular braid that gives rise to a link £ by closure
of the braid.

Now, given the solutions of the YBE described in Section 3, it is natural to
investigate whether these extend to Yang—Baxter operators in the sense of Turaev
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(Definition 5.12), and, if so, what the resulting link and knot invariants bring.
Here I report some preliminary results only. Further work is in progress.

5.13. Remarks. Both the constants o and 3 can be normalized to 1. Indeed if
(S,v,a,B) is a Yang-Baxter operator then (a~'S,37'v,1,1) is another one.
However, for the formulas below it is convenient to keep a (but 3 will always
be 1). As Turaev observes, if v is diagonal, then (5.8) implies that S = & where

S is the n x n matrix 8% = s;3, D is the column vector (vy,...,v,)T and & is
the column vector (1, 1,...,1)T. Thus, assuming v is diagonal, it is unique if

S is invertible.

5.14. THEOREM. Let R be a solution of the YBE (as described in Theorem
3.35) consisting of a single block (with components C\,C,,...,Cp (p > 2))
with parameters y and z and let ;. and ) be the two solutions of the equation
X2 =yX + 2 Let S = TR be the associated solution of (5.1), then S extends
to a Yang—Baxter operator with the scalar o such that

o? = (_I)P—IAkA—ku—Huku—k,\-H’ (5.15)

where ky (resp., k) is the number of components C; with A\; = X (resp.,
Aj=p).

’ Proof. For the moment regard R, R~'and S, S~! as n x n matrices made
up of blocks that are also n x n matrices. Observe that the diagonals of all the
off-diagonal blocks are zero. Take v = diag(vy,...,vy), the diagonal n x n
matrix with diagonal entries vy, ...,v,. Because v is diagonal and 523 = 0,
unless {a, b} = {c,d}, (5.7) holds. It also follows (cf. (5.10)) that the conditions
(5.8), (5.9) only involve the diagonal blocks of S and S~!. As is easily checked,
the inverse R™! of R is also a solution of the YBE and has the same structure
as R. One can easily verify that R~! is equal to

(R°HZ =214+ 471 if a<b,

(R7Dge = (Rp)™ if axb,

(R7H% = 271y, if a<b, (5.16)
(RH2t =z if a>b,

(R Dg = @)™ (=27 (resp,p™")).

Indeed if a < b, {a,b} # {¢,d}
(RR™NH% = R#(R™YY, = RS(R™H% + RE(R™) = 0.
Further, if a < b,a=¢, b=d
(RR™")g = RG(R™)g + Rig(R™)g = 22y, 2wy + 0= 1
andifa<b a=d, b=c
(RR™Yge = RB(R™E + RE(R e
= 2z (A )+ A+ )zl =0
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because z = —Ap.

The other cases a ~ b, a > b are even easier to check.

Switching A and p if necessary, we can assume that A; = A. Let the pattern
of X’s and s be the following

A =...=Ag =X Adjtl = = Mi+dy = M
Mybdy+1 =" = Mdyrdybds = A5 -

Let r be the number of switches (di,d; + 1),...,(dr,dr + 1), so that Ap =
X if r even and )\, = p if 7 is odd. We define a diagonal p X p matrix
T =diag(T},Ts,.- ., Tp), where Tj is equal to the trace of v with respect to
the jth component, i.e. Tj = 3 e, Vi-

It is now easy to see that Equations (5.8), (5.9) (with 8 = 1) amount to the
following: (where the equations resulting from (5.8) constitute the upper block
and those from (5.9) form the lower block. Here, as in the above, to follow the

calculations, it is useful to keep the first example of (3.36) in front of one).

)\Tl =«
D+ (p+ AT =«

Mg+ (p+ )T+ + Tg—2) =0
My, + (p+ N+ +Tg-1) =
pTgsr + (p+ NI+ -+ Ty) =
pTgpa+ (+ 0T+ -+ Ty+1) =

Q R

pTgrd—1 + (+ AT+ + Ty pa,-2) = @
pTard, + (AN + -+ Tapdy-1) = @
ATy syt + (+ XD+ -+ Tgytg) =
Algrdpz + W+ X (T + -+ Taydy1) = @

R+ (p+ T+ 4+ Tpe1) = @

1
3T+ A4y YD+ + T =

1
30+ AT+ +Tp) =
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%le—l + AT )Ty + 4+ T) = é

%le AT e Ta i+ + 1) = é

,%Tdnﬂ + AT ) (Thpa -+ ) = .é
deHrZ + AT ) Ty + T) = é

1 | -1 -1 1
;le-l-dz-—l + AT ) Tggay + -+ Tp) = =
/lle1+d2 + AT+ YT gy + - F T,) = ?.1;
%Td|+d2+l + AT+ T (Th e+ + Tp) = _;_
';:Td|+d2+2 AT ) Ty g+ + Tp) = 21;

1 1

T = —

K PT o
where k = A (resp., 1) depending on whether r is even (resp., odd). Now observe

that subtracting the (i + 1)th from the ith equation in both the upper and lower

blocks results in the same relation between T;,; and T} viz. Tivy = =A"uT;,
or Ti+1 = —pu~'\T;, or Tj; = —T;. This results in the following recipe for the
Ts

T =\,

(AT ) Tmy 3f A=A = N\,
if Ay =X\Nop=p,

T,={ ! : 5.17
P (T INTy A== A, G-17)
=T if A= p, M) = A,
T — Ao~ ! if r is even,
P o™t if ris odd.

It follows that, depending on the number, r, of switches from \ to L or vice
versa
if r is even
T = (—l)p_l/\k#_k’\-i-l,uk’\-k“_lTl, Tl — )\—IOL, Tp — )\a——l

bl

if r is odd
T, = (1P~ Aw=mybbur T = X la, Ty = pa !, (5.18)
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where ky is the number of i’s for which A\; = X and k, the number of ’s for
which \; = p, ky + k, = p. In both cases, it follows that

P = (_1)P—1)\kx—ku+luku—kx+l (5.19)

and for both a’s solving (5.19) (taking, if necessary, a quadratic extension of K)
(5.17) then specifies 11, . .. ,Tp such that (5.8), (5.9) are satisfied (with 8 = 1).
This concludes the proof of the theorem.

520. Remark. Both choices for a in (5.19) give up to a sign the same link
invariant, cf. [22, 3.3]. As for the uniqueness of the Yang—Baxter operator it is
evident that the solution of T, ..., Tp is unique, hence the solution of vy, ...,y
is unique if and only if all components consist of one element, i.e. the block
is of type II. This can also be seen from the fact that the matrix S satisfies
si=s)=rli =N if i ~ j,y if j <iand 0 if i <, so it is invertible if and
only if we are dealing with a type II block.

521. COROLLARY. Let R be any solution of the YBE as described by Theo-
vem 3.35 and S = TR the corresponding solution of (5.1). Then S extends to a
Yang—Baxter operator (S, v, e, 1) if any only if for all blocks

—ku; k. —ky. +1
a2=(—1)’”"/\f“ '““’“ui‘“ M (5.22)

for a block with p; > 2 components,
of = )2 (5.23)

for a block with one component.

Proof. Take v diagonal. From the form of S (and S~! which has the same
form), one easily sees that (5.8) and (5.9) only involve the separate blocks and
the v’s with corresponding indices. It is trivial to check (5.23). Finally, (5.7)

holds because s2 = 0 unless {a, b} = {c,d} and v is diagonal. O

The next result is perhaps a disappointment. With (5) extra variables in an n?x
n? single type II block solution of (5.1) it might be hoped (even expected) that
these will give some extra information when employed to define link invariants
via Turaev’s formula (5.12). This is not the case, and using both solutions A and
p of X2 = yX +z (instead of just 1) for the p, = 52% also gives nothing new.

5.24. PROPOSITION. Let S be a single type Il block solution of (5.1). Let
occur m times as a pg, M < %n Then the link invariant Ts defined by S by for-
mula (5.12) using the extended YB operator (S, v, a, 1) defined by Theorem 5.14
is the same as the one defined by the single type II block solution S\ of size
(n—2m)? x (n—2m)% zy5 = 1 = z for all i,j, same y as S (i.e. it is one of
the ‘classical’ Ag invariants of Turaev).
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Proof. It follows immediately from (5.12) that (S, v, e, 8) and (pS, v, pa, B)
define the same link invariant. We can therefore assume z = 1, i.e. A\ = q,

p = —q~!. Then, by (5.15), & = +¢" 2™ A simple check now shows that S
satisfies the relation

S—81=(g-q¢HI, (5.25)

and this also satisfied by Sj. It follows that the link invariants T and 7} defined
by S and S (or —S) which does not matter by 5.20) both satisfy, [22], the same
skein relation.

q" P Ts(Ly) — ¢ MTs(L2) = (¢ — ¢~ ) Ts(Lo), (5.26)

where L, L_, and Ly are three oriented links which are identical except for
one crossing where they look, respectively, like

AT

0

By repeated changing of + crossings to — crossings any link can be turned into an
unlink. Thus, the value of T’s is uniquely determined by the skein relation (5.26)
and its values on k-component unlinks. The latter are equal to (vy + - - - + v, )*.
Finally one checks that

(V1+...+yn):(17|+"'+I7n—2m))

where (S1,7,a,1) is the YB operator belonging to S;. This is (with induction)
seen as follows. If d; is the shortest run of X’s or ’s, then if ¢ = 1, the pattern dp —

dy,ds,...,dr41 gives the same trace value of v as the original (because Vg 41 =
—Vd;, Vdj+i = —Vdj~i+1, ¢ = 1,...,d)) and similarly if ¢ > 1, the pattern
di,...,di—1, diy1,...,dpy1 gives the same trace value of v as the original. This

proves the proposition.

5.27. Remark. This result (Proposition 5.24), illustrates the previous remark (cf.
(3.37)) that the () extra diagonal parumeters in the general on type II block
solution of the YBE, i.e. the z;; and #, play in some sense a trivial role, while
there is but one essential parameter, viz. y (or ¢). On the other hand, the corre-
sponding quantum groups, the general (g) + 1 parameter one, and the classical
1 parameter one are not isomorphic.
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528. INVARIANTS FROM DIAGONAL SOLUTIONS

On the other hand, perhaps surprisingly, the diagonal solutions of the YBE can
give rise to nontrivial knot invariants. Take, for example, the n = 2, 2 blocks of
size 1 solution:

o 1 o 1,.—1
- B -
R=| *m , R'= 2, (5.29)
21 Ty
22 :cz"zl
with corresponding solutions of (5.1)
-1
Zi1 I
g 0 =z S‘"l 0 2_11B21 5 50
N 2z O ' - zy' 0 - 530
22 x5,

This S, for 1 = 7, extends to a Yang—Baxter operator (S,v, o, B) withv = I,
if @ = £1] = T22, B = 1 and gives rise to a link invariant that takes the following
values on the following links

o 0 © @® ¢

Ly Ly Ly (trefoil)

T(LO) =2, T(Ll) =4, T(Lz) =2+ 27,
T(L3) =2+2v%,  T(Ls) =2,  T(Ls)=2+2v,
T(Le) = 2(1 +7)%, T(L;) =2+6y", T(Lg)=6+27" (531

Here v = r'2r2! = z. Thus, this invariant counts components, can detect various

ways in which components are linked but does not distinguish between, e.g.,
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trefoil and unknot (Lo, and Lg4; cf. also L, and Ls). The two size 1 blocks
themselves give only the trivial invariant, thus this example shows conclusively
that putting two blocks nontrivially together can definitely give nontrivial extra
information.

5.32. Remark. The representations of the Braid group on k strings By defined by
S and S) in Proposition 5.24 are different (even if m = 0), but this difference
does not show up in the trace formula (5.12). This can also be seen directly in
cases where there is no relation like (5.25), which is important in dealing with
solutions S which do not consist of a single block. Indeed:

5.33. THEOREM. R be an invertible n* x n* matrix with diagonal entries z;;

and possibly nonzero diagonal entries q;; = rg 1 < j, and no other nonzero
entries. Let S = TR. Let w = ;! ...0{™, € € {1,~1} be an element of the
braid group By of braids on k strings. Let S; = I®~! @ § @ I®*~i=1 and let
Sw = S’fl' ... S;™. Then the diagonal elements of Sy, are Laurent polynomials in
the q;j, the xi;, and the products Ti;Tj; = zjj.

Proof. The only off-diagonal elements of S are of the form

R gio_ gt =1
85 = Tij = Tij, 83 = 7*;1- = Tji = Ty Zij- (5.34)

The off-diagonal elements of R~! are equal to —q,'jx;ilxi_jl,
that the diagonal elements of S~! = R~!7 are of the form

1 < 7. It follows
zi', —qij(zijziy) " = ~qijz,~§‘ (5.35)
and that the off-diagonal elements of S~! are of the form

(SO =05 =252y, (ST =" (5.36)
Now consider a diagonal element of S,,. Such an element is a sum of products
of the form

D (Doiin (D) i1 @)in(2) it (m=1)oin (m—1)
t::Ez).‘;n(z)t;i(3)...;(3) b ) (537

with ¢;(m) = 4(1), Il = 1,...,n, and T::Efllgn(l)zn(lﬂ) an element of S’fl’.
Because of (5.34)—(5.36) each product (5.37) is zero unless all the permuta-

tions

i(l)...in(l)
Z](l+1)zn(l+ 1)
are of the form identity or 7, where 7 is the transposition (k k + 1) that
interchanges the kth and (k + 1)th entries and leaves all others in place. The
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identity permutations produce diagonal entries from Sy, or Si, ! and by (5.34)-
(5.36), these are of the desired form. The remaining permutations in (5.37) form
a word w in the 71, . .., Tn—1 that is equal to the identity in the permutation group

I1,, on n-letters. The relations between the generators 7y, ..., Tn—| of II,, are the
following
7',% =1,
-1, _—1_-1
TRTR+ 1Tk 1 Tk That = Lo (5.38)

Tknrk'l’rl'l =1, if |k-=1=2.

It follows that somewhere in the word w one of the three left hand sides of
(5.38) occurs and by induction (in the length of w) it follows that if suffices to
check that in all three cases, the corresponding factors in (5.37) combine to give
a monomial of the desired form. Observe that S and S~! have the same off-
diagonal entries except for a factor z;;. Thus, replacing each Sl‘l with S; only
changes things by monomials in the z;; and we may assume that all g; are 1.

In the first case we obtain a product

talabaz ajbaay
ay baaz 3] a.baz

which is equal to ZgpTh, = 2a- Here and below, the «; stand for strings of

indices that remain unchanged.
In the case of the second type of relation of (5.38) we obtain a product

talabcaz talbacozz talbcaaz talcbaaz talcabaz ajachay
aybacay “aybea; “aycbac; Yo caber ajachay “ayabeon
which is equal to ZgpZacTocTbaTcaleh = ZabZbcZac-
Finally, in the case of the third type of relation of (5.38), we obtain a prod-
uct
tal abaycdo tal bacycdos ta' baaydecas yayabogdeas
aybacgcdos Yo bacydeas “ayabon deas “apabay cdo

which is equal to Z4pTcdTbaZde = ZabZed- This concludes the proof. O

5.39. COROLLARY. Let R be any one of the solutions of the YBE described in
Theorem 3.35 and suppose conditions (5.22), (5.23) of Corollary 5.21 hold (so
that there is an YB operator (TR, v, o, 3)). Then the corresponding link invariant
is a Laurent polynomial in the \;, z;, ;.

Proof. If there are no blocks of type I present this is an immediate corollary of
Theorem 5.33. The presence of a block of type I changes very little (essentially
on extra scalar multiple of the identity block in §) and the result remains true.

5.40. NEW INVARIANTS FROM MIXED SOLUTIONS

We already know from 5.28 that putting together several blocks (in a nontrivial
way can give real extra information. In the case of n =4 and 2 (different) type
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II blocks of size 2 the resulting link invariant will be a Laurent polynomial in
AL, A2, 21, 22, 212. One of the 2’s, say zj, can be normalized away (or absorbed
into o which is the same thing) so that the result is a Laurent polynomial in
four variables (with one nontrivial relation given by (5.22) between them and
there does not seem to be any obvious way to write this polynomial in terms of
known ‘classical’ ones. In particular, there is in general (e.g., for A} # A;) no
relation like (5.25). Just what this polynomial and all the other ones arising from
Theorem 3.35 via Corollary 5.21 bring in terms of new invariants remains to be
explored.

Appendix 1

Direct proof that the ideal generated by the elements (2.3), (2.4) is a Hopf algebra
ideal in K (t).

Let I be the ideal in K(t) generated by the elements (2.3), (2.4). Under the
comultiplication of K (t), we have

102 — o018 s 1210 @ thit — g4l 12 @ it (Al.1)

11712 71772

First consider the terms on the right of (Al.1) with ¢; =% and j; = j,. These
balance in pairs:

142 @ tith — ¢tbt? @ titl
= (9t — ¢l @ titl € T @ K (t). (A12)

The remaining terms on the right-hand side of (Al.1) are treated in groups of
four (i # 7).
t2td @ tht] — q®t0td @ tht] + t4t} @ titl — g5l @ tlty
= (1) — g3 + (q)7 018 — (¢™)(0) " 080) @ 6
=0 mod(I® K(t)+ K(t)®1I) (A1.3)

(where the first congruence is in fact mod(K () ® I) and the second mod ] ®
(K(£)))-
The elements (2.4) are twice as complicated to treat. Under the comultiplica-
tion, (2.4) goes to
t2 ) @ itz — q®th 12 @t 4
+(q") T g th, @t e — (@™)(q7) T e, @t (A1.4)
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The terms with 4; = i, fit with those with j; = j, for the same value (i} = iy =
J1 = Ja):

108 @ titl — ®idte @ titl = (122 — ¢ ttf) @ it € I ® K (¢).
Similarly, the terms with k; = k; fit with those of {; = [, for the same value.

Recall that if @ = b the element (2.4) is zero. So a # b in (Al.4). The
remaining terms of (Al.4) are dealt with in groups of eight as follows:

1212 @ tit] + t20 @ thtl — g™t} @ tht] — ¢t @ thts+
+(g™) e @ titl + (") e ® tlth —
—(@®)(@") 7t @ ttl — (¢ ()T it @ ity
= (197 — qtbt2 + (¢) 7' t5t} — (¢")(a7) 'et) @ it —
—(g9) Ml @ (fit] — gt + (¢7) T — ¢ (¢7) T i) +
+(g)(g7) "'t @ (tt] — gUHits + (¢7%) Mt — ¢ (¢7) T ety +
+(1288 — q2belte + (¢7) ' e3? — (¢®)(¢7) 75 ® (¢7°) T HiA,

which is in I @ K (t) + K(t) ® I. Above the RHS differs from the LHS only in
regrouping and the insertion of the four terms

(@) et ett,  ¢®(¢) g e,
(@) M) @ et ¢®(¢Y) (@) @ i,
each both with a plus and a minus sign.

This proves that I, is a bialgebra ideal. The proof for Ir is completely
analogous.

Appendix 2

Derivation of the R-equations (R1)—(R7) of Subsection 3.6 and proof that these
are all equations.

The general equation is (cf. (3.2))
rib ek = o rilz bl (A2.1)
By Lemma (3.4), we know that under the condition
r® =0 unless {a,b} = {c,d} (A22)
both sides of (A2.1) are zero unless {a,b,c} = {u,v,w}.

CASEl.a=b=c=u=v=w.
Then the LHS of (A2.1) is nonzero iff k; = k; = k3 = a and then is equal to
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(r22)3. Similarly, the RHS of (A2.1) is nonzero iff I} = I = I3 = a and then it
is also equal to (r22)3. No extra equation results from this case.

CASE 2. a # b # c # a.

There are six subcases to be considerd, namely how the u, v, w match up with
the a, b, c.

Subcase2.1.u=a, v=0>0, w=c

For a nonzero term on the LHS we need k) = a, ky = b, k3 = ¢ giving a term
,rabrac,,.bc

ab’ ac’ be* o

For a nonzero term on the RHS we need [} = b, I; = ¢, I3 = @ giving a term

,r.bc,racrab
be'ac’ ab- . . )
Thus, always LHS = RHS in this subcase and no extra equation results.

Subcase 2.2. u=a, v=c, w=b.

For a nonzero term on the LHS we need k; = a, k; = b, k3 = ¢ giving a term

ab,.ac,.bc
TabTacTch

For a nonzero term on the RHS we need [{ = ¢, I = b, I3 = a giving a term

rbc,ra.b,r.ac
cb’ab’ ac* . . )
Thus, always LHS = RHS in this subcase and no extra equation results.

Subcase 2.3. u=b, v=a, w=c

For a nonzero term on the left hand side we need k| = b, k> = a, k3 = ¢ giving
b..b

a term 7p TpoT e .

For a nonzero term on the RHS we need [}, = b, I; = ¢, I3 = a giving a term

T.bcracrab
be' ac’ ba* . . .
Thus, always LHS = RHS in this subcase and no extra equation results.

Subcase 24. u=0>b, v=c, w=a.

For a nonzero term on the LHS we need k; = b, k, = a, k3 = ¢ giving a term
T.abrbc,rac
ba' bc' ca*
For a nonzero term on the RHS weneed [y = b, [, = corly =¢ I} = b and

I3 = I, giving the terms rggrggrgg and rggrggrgg.

Thus, LHS = RHS in this subcase holds iff

bey,.ab_acy __ . bey..ac,.cb be,.ab
Tbe (Tbarca) = The ('rca'rbc + rcbrba)' (Rl)
Subcase 2.5. u=1¢, v=a, w=Vb.

For a nonzero term on the LHS we need k; = a, k, =bor k; = b, ky = a and
ks = k giving the terms 7%72r% and rgrberab,

For a nonzero term on the RHS we need [} = ¢, [; = b, I3 = a giving a term

be,.ab,.ac
TebTabTca-
Thus, LHS = RHS in this subcase holds iff

b b b bey _ .abg b
rab(TeaTab + ThaTeh) = Tab(TcbTea)- (R2)
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Subcase 2.6. u=c, v=">, w=a.

For a nonzero term on the LHS we need k; = a, k, =bor k; = b, k) = a and
ks = k; giving the terms r%rocr?e and rilrifrgl.

For a nonzero term on the RHS we need [ = b, lp, = corlj =¢, [, = b and
Is = I, giving the terms 72r2re and riribrle.

Thus, LHS = RHS in this subcase holds iff

b..b b_avb be __ . .bc .chb ac ab,.ba,.bc
ToyThaTes + ThaTha Teb = Tbccb"ca + TbaTchch: : (R3)

CASE3.a=b#c.

Again there are 2 number of subcases to consider depending on how the u, v, w

match up with the a, b, c. The six possibilities a priori coincide in pairs giving

three subcases.

Subcase3.1.u=v=a=b, w=c

For a nonzero term on the LHS we need k; = a, k, = a, k3 = c giving the term
aa.ac,.0c

T'aaracra.C' o

For a nonzero term on the RHS we need [} = a, [ = ¢, [3 = a giving a term
acC,.0C,.00

TGCTGCTCLG,’

Thus, always LHS = RHS in this subcase and no extra equation results.

Subcase32. u=w=a=bv=c

For a nonzero term on the LHS we need k; = k; = a, k3 = c giving a term
raeracrac

For a nonzero term on the RHS we need [y = a,lp =corly =c¢ I =a and
I3 = Iy giving the terms r25rasrse and 707T30Tae-

Thus, LHS = RHS in this subcase iff

ac,.ac,.ca __
7na.c""ca'rac =0.

(R4)

Subcase 33. u=c,v=w=a=>b.

For a nonzero term on the LHS we need k; = ky = k3 = a giving a term
aa,.ac,.aa

raarcaraa'

For a nonzero term on the RHS we need |} = a,l, =corly =¢ I = a and

I3 = I, giving the terms rSréSrés and reergaTos-

Thus, LHS = RHS in this subcase iff

aa,.qa,.ac __ ,.0a,.0C,.aC ac,.ca,.ac
’raaraarca - ’raarcarca + Tac'rca.’rca' (RS)

CASEd4.a#b=c
As in case 3, there are three subcases to consider

Subcase 4.1. u=a, v=w=b=c

For a nonzero term on the LHS we need k; = a, ky = k3 = b giving a term
1-abyab,.bb
abTabTbb
For a nonzero term on the RHS we need [} = I = b, 3 = a giving a term
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rbbrab,ra.b
bb’ ab’ ab- . )
Thus, always LHS = RHS in this subcase and no extra equation results.

Subcase 42. u=b=w=¢, v=a.

For a nonzero term on the LHS we need ky = a, ky =bor k; = b, k) = a and

k3 = k; giving the terms rggrggrg‘g and rggrggrgg. N

For a nonzero term on the RHS we need [} = I, = b, [3 = ¢ giving a term
bb,.ab,.ab

"bb"ab"ba o .
Thus, LHS = RHS in this subcase iff
ab_.ab, ba
TabThaTab = 0

giving (R4) for the second time.

Subcase 43. u=v=b=c¢, w=a.

For a nonzero term on the LHS we need ky = a, kp = bor k; = b, k, = a and
k3 = ki giving the terms r2rgrbe and rgorbirab,

For a nonzero term on the RHS we need [} = I, = I3 = b giving a term r{rilrf.
Thus, RHS = LHS in this subcase iff

bb, .bb_ab __ . bb, .ab, ab ab, .ba,ab
TeT567ba = ThbTba ba + Tab ba ba- (R6)
Note that this is not the same equation as (R5) (also after changing b to a, a
to ¢).

CASES.a=c#b.
As in Cases 3 and 4, there are three subcases to consider.

Subcase 5.1. u=w=a=c¢, v=>".

For a nonzero term in the LHS we need k| = a, ky = b or k; = b, ky = a and
ky = k| giving the terms r%r2rb and r@brbirab,
For a nonzero term on the RHS we need [y = b, I, =a orl; =a,l, = b and

I3 = I, giving the terms r2%r2ar%e and rbgrgbrbe.
Thus, LHS = RHS in this subcase iff

ab_ba_ab __  ab, ba, ba
TbaTabTba = ThaTabTab- (R7)
Subcase 52. u=v=a=c¢, w=>.
For a nonzero term on the LHS we need ky = a, k; = b or k; = b, k; = a and
ky = ky giving the terms r2r24r and rabrberab,

For a nonzero term on the RHS we need [} = a, I = b, I3 = a giving a term
ba,.ab,.aa

TabTabTaa- .
Thus, LHS = RHS in this subcase iff
ity =0

giving (R4) for the third time.
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Subcase 5.3. u=b, v=w=a=c

For a nonzero term on the LHS we need ky = a, ky =bork; =b, kp = k3 =a

giving a term rgrberas,

For a nonzero term on the RHS we need [} = b, [ = aorly =a, l, = b and
Is = 1, giving the terms 72732 and rbapabpba,
Thus, LHS = RHS in this subcase iff

ba, .ab, ba __
TbaTbaTab =

giving (R4) for the fourth time.
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